
윤정연

복잡함을 단순하게 바꾸는

프론트엔드 개발자

PORTFOLIO YOON JEONGYEON

About

팀의 일하는 방식을 더 효율적으로 만드는 일을 좋아합니다.

아이디어를 구체화해 문제를 해결하고,

함께 결과를 만들어가는 과정에서 즐거움을 느낍니다.

원리를 깊이 이해할 수 있는 개발자가 되기 위해 꾸준히 공부하고 있습니다.

 TypeScript · React · Next.js 기반의 웹 서비스 개발 프로젝트 경험

 기획 · 디자인 등 타 직군과 협업하여 서비스를 개발한 경험

 문제를 기술적으로 해결하고 비효율적인 과정을 개선한 경험

 GitHub Actions를 활용한 반복 작업 자동화 경험

 기술 블로그와 개인 위키 운영을 통해 지속적으로 학습하고 지식을 공유

Key Point

yoouyeon.dev@gmail.com󰀂

010-2290-6150󰀄

mailto:yoouyeon.dev@gmail.com
tel:010-2290-6150

RESUME YOON JEONGYEON

윤정연

Contact yoouyeon.dev@gmail.com

010-2290-6150

Github https://github.com/yoouyeon

Blog https://blog.yoouyeon.dev

Skils JavaScript, TypeScript
React, Next.js

Educations 42 Seoul 2021 - 2023
C/C++ 기반 과제를 수행하며 CS 핵심 개념을 깊이 학습했습니다.
이 과정에서 자기주도적으로 학습하고 협력하며 성장하는 방법을

배웠습니다.

상명대학교 2017 - 2022
컴퓨터과학과 졸업

5 Projects

MODDO 2025
TypeScript, React

모임에서 발생한 지출을 분할 정산하는 서비스입니다. 프론트엔드 개발로 참여했습니다.

Githru 2024
TypeScript, Jest, Git

Git 데이터를 시각적으로 분석하는 VSCode Extension 오픈소스 프로젝트입니다.

Reviewer 2024
TypeScript, Next.js

광고 회사 어드민 페이지 개발 외주 프로젝트입니다. 프론트엔드와 PM으로 참여했습니다.

peer 2023 - 2024
TypeScript, Next.js

42 Seoul 학생들을 위한 프로젝트 팀빌딩 프로젝트입니다. 프론트엔드 개발로 참여했습니다.

42gg 2023
TypeScript, Next.js

42 Seoul 학생들의 탁구대 예약과 랭킹 서비스입니다. 프론트엔드 개발로 참여했습니다.

5 Experiences

IT 연합동아리 DND 2025
프론트엔드, 백엔드 개발자와 디자이너 총 6명으로 구성된 팀으로 8주간 서비스 기획부터

개발, 배포 후 피드백까지의 과정을 경험했습니다. 활동 결과 최우수상을 받았습니다.

2024 오픈소스 컨트리뷰션 아카데미 2024
Git 데이터를 시각적으로 분석하는 VSCode Extension 오픈소스 프로젝트 Githru에 참여
해서 데이터 처리 속도 개선과 테스트 유지보수에 기여했습니다. 활동 결과 장려상을

받았습니다.

Next.js 한글 문서 번역 2024
Next.js 공식 문서의 한글 번역 페이지를 만드는 오픈소스 프로젝트에 기여했습니다.

스마일게이트 AI 해커톤 2024
프론트엔드, 백엔드 개발자와 기획자, 프롬프트 엔지니어로 구성된 팀으로 1박 2일간 생성형
AI를 이용해 편지를 작성하고 공유할 수 있는 서비스를 기획하고 개발했습니다.

유니톤 - IT 커뮤니티 연합 해커톤 2023
프론트엔드, 백엔드 개발자와 기획자, 디자이너로 구성된 팀으로 2박 3일간 K-POP 팬들이

좋아하는 연예인과 관련된 장소를 기록하고 공유할 수 있는 서비스를 기획하고 개발했습니다.
활동 결과 우수상을 받았습니다.

2 / 17

mailto:yoouyeon.dev@gmail.com
tel:010-2290-6150
https://github.com/yoouyeon
https://blog.yoouyeon.dev

PROJECT 01 - MODDO YOON JEONGYEON

모임 정산 서비스
MODDO (모또)

배포 사이트 https://moddo.kr/

깃허브 https://github.com/moddo-kr/moddo-frontend

팀 구성 프론트엔드 2명 / 백엔드 2명 / 디자이너 2명

개발 기간 2025.01 ~ present

기술 스택 TypeScript React, , Vite, TanStack Query, styled-components

역할 프론트엔드

모임 지출 추가와 공유 기능 개발, 디자인 시스템 구축

모또는 모임 후 정산 과정에서 총무의 부담을 줄이기 위한 프로젝트입니다.

모임에서 발생한 지출을 간편하게 분할 정산하는 기능을 제공하고

캐릭터 보상 시스템으로 정산 독촉의 심리적 부담을 낮춰

자연스러운 정산 참여를 유도합니다.

https://moddo.kr/
https://github.com/moddo-kr/moddo-frontend

PROJECT 01 - MODDO YOON JEONGYEON

지출 기록
정산할 지출을 추가하는 단계입니다. 지출 장소와 날짜를 함께
입력할 수 있고, 지출 금액을 입력하면 참여자들에게 자동으로
1/N 분할합니다.

지출 내역 확인
지금까지 추가한 지출들을 확인할 수 있습니다. 추가한 지출을
수정하거나 삭제할 수 있고, 새로운 지출을 추가할 수 있습니다.

정산 공유
지출 내역을 참여자들에게 링크로 공유할 수 있습니다. 바로

접속할 수 있는 QR 코드를 만들 수 있고, 카카오톡과 슬랙으로
공유할 수 있는 기능을 제공합니다.

정산 성공
참여자들이 모두 제한된 시간 안에 정산을 완료하면

햄스터 캐릭터 보상을 얻을 수 있습니다.

4 / 17

PROJECT 01 - MODDO YOON JEONGYEON

Problem

❶ 에러 처리 로직의 분산과 일�관성 부족
각 컴포넌트에 에러 처리 로직이 흩어져 있어 동일한 코드를 여러 곳에서 반복적으로 수정해야 했습니다.

또한 화면마다 에러 처리 방식이 달라 비슷한 오류 상황에서도 결과가 달랐고, 새로운 예외가 생기면 처리

과정이 누락되기도 해 서비스 신뢰도와 사용자 경험이 떨어질 위험이 있었습니다.

❷ 렌더링 로직과의 결합
비즈니스 · 렌더링 로직 안에 예외 처리가 섞여 있어 코드의 핵심 로직을 파악하기 어렵고,

에러 화면을 재사용하거나 처리 패턴을 통일하기 어려웠습니다.

Error Boundary를 이용해 에러 처리 로직을 선언적으로 분리하고

코드 가독성과 유지보수성을 높였습니다.

▼ 비즈니스 로직과 섞이고 일관성이 없었던 에러 처리 코드

▼ 커스텀 useQuery를 이용해 일관된 방식으로 에러와 처리 방법을 정의하는 코드

Solution

서비스에서 발생하는 에러를 Router 외부 · Router 내부 · loader 계층으로 나누고,
각 계층별로 Error Boundary를 적용해 렌더링 로직과 에러 처리를 분리해 가독성과

유지보수성을 높였습니다.

또한 커스텀 useQuery/useMutation 훅을 설계해 API 응답의 상태 코드별 에러를

일관된 방식으로 처리하도록 리팩토링했으며, 그 결과 유사한 오류 상황에서 일관된 에러
화면을 제공할 수 있게 되어 사용자 경험이 개선되는 효과도 있었습니다.

‣ 관련해서 작성했던 블로그 글
https://blog.yoouyeon.dev/error-boundary-error-handling

5 / 17

https://blog.yoouyeon.dev/error-boundary-error-handling

PROJECT 01 - MODDO YOON JEONGYEON

Problem

프론트엔드와 백엔드를 병렬로 개발하는 일정이었고, 백엔드 API는 개발 일정 후반부에
배포될 예정이었습니다.

개발할 화면 대부분이 API 응답에 의존하고 있었기 때문에 실제 API를 받은 뒤에

연동을 시작하면 프론트엔드 구현과 QA를 마무리할 시간이 거의 없는 상황이었습니다.

이대로 진행하면 QA가 충분히 이뤄지지 않아 프로젝트 완성도가 떨어지고, 발표 시점에

안정적인 데모를 보여주기 어려울 것이라는 우려가 있었습니다.

MSW를 이용해 프론트엔드 개발 기간을 단축시켰습니다.

Time

요구사항 분석과 기획
백엔드 개발

프론트엔드 개발 (UI) pending

pending

프론트엔드 개발 (API)
QA

▼ API Mocking 전

Time

요구사항 분석과 기획
백엔드 개발

프론트엔드 개발 (UI) pending

pending

프론트엔드 개발 (API)
QA

▼ API Mocking 후

▼ Axios 요청 인터셉터에 useMock 옵션을 추가해, MSW 모킹 API로 전환할 수 있게 했습니다.

Solution

MSW를 활용해 API를 모킹해서 프론트엔드 개발을 백엔드 일정과 무관하게 진행할
수 있도록 했습니다.

모킹 과정에서는 백엔드 개발자와 함께 API 스펙을 사전에 조율해서 실제 API 변경
에 따른 리스크를 줄였습니다.

이 결과 실제 API 배포 이전에 대부분의 기능을 구현하고, 발표 전까지 충분한 QA

시간을 확보할 수 있었습니다.

백엔드 API 개발 완료 전

프론트엔드 API 작업 진행

6 / 17

PROJECT 01 - MODDO YOON JEONGYEON

Problem

❶ 프로세스마다 단계 관리 방식이 달라 일관성이 부족함

모임 생성 프로세스에서는 URL 기반으로 단계를 관리하는 반면

지출 생성 프로세스에서는 컴포넌트 상태 기반으로 단계를 관리해서

방식 간 일관성이 부족했습니다.

❷ 일부 단계에서 브라우저 네비게이션이 동작하지 않음

컴포넌트 상태 기반으로 단계를 관리하던 일부 프로세스에서는

뒤로가기 시 진행 중이던 단계가 초기화되는 문제가 있었습니다.

이 문제는 일부 프로세스에만 존재해서 일관된 사용자 경험을 제공하지
못하는 문제가 있었습니다.

URL 기반 퍼널 구조를 적용해

멀티스텝 폼의 단계 전환을 일관적으로 제어할 수 있도록 개선했습니다.

Solution

모임 생성과 지출 생성 프로세스의 단계 관리 방식을

URL 기반 퍼널 구조로 통일했습니다.

각 단계의 상태와 전환 로직을 루트 페이지 한 곳에서 관리

하도록 재설계해서 코드 응집도를 높였습니다.

URL을 기반으로 단계 흐름을 제어해서 뒤로가기 등

브라우저 네비게이션이 자연스럽게 동작하도록 개선했습니다.

이름 입력
/group/name

비밀번호 설정
/group/password

참여자 추가
/group/member

모임 생성 프로세스

지출 생성 프로세스

지출 입력
state: create

지출 확인
state: confirm

입금 정보
state: account

지출 공유
state: share

이름 입력
/group?step=name

비밀번호 설정
/group?step=password

참여자 추가
/group?step=member

지출 입력
/bill?step=create

지출 확인
/bill?step=confirm

입금 정보
/bill?step=account

지출 공유
/bill?step=share

지출 생성 프로세스

모임 생성 프로세스

SOLUTION 1

모임 생성과 지출 생성 모두 step 파라미터를
이용하여 상태를 URL로 관리합니다.

PROBLEM 1

URL 기반으로 단계를 관리하고

상태 관리 로직이 전역으로 분산되었습니다.

PROBLEM 2

컴포넌트 상태 기반으로 단계를 관리해서

브라우저 뒤로가기 지원이 어려웠습니다.

SOLUTION 2

모든 단계에서 브라우저 뒤로가기를 지원합니다.

개선 전 다이어그램 ‣

개선 후 다이어그램 ‣

7 / 17

PROJECT 01 - MODDO YOON JEONGYEON

Problem

❶ PR 생성 시 반복되는 수동 작업

라벨 지정, 리뷰어 할당, Zenhub 태스크 상태 변경을

PR을 생성할 때 마다 수동으로 처리해야 하는 불편함이 있었습니다.

❷ 작업 누락과 처리 방식 불일치

수동 작업 과정에서 일부 단계가 누락되거나, 개발자마다 처리 방식이 달라

일관성이 떨어졌습니다.

GitHub Actions를 이용해 반복 작업을 자동화했습니다.

Solution

GitHub Actions 워크플로를 구축해 PR 생성과 병합 과정의

반복 작업을 자동화했습니다.

브랜치명을 기반으로 관련 이슈의 라벨을 자동 부여하고,

Zenhub 태스크 상태를 자동으로 업데이트하도록 구성했습니다.

▼ action 실행 결과

▲ PR 생성 시 Assignee 지정·라벨 할당·Zenhub 이동 단계를 자동화한 워크플로 (수도 코드)

‣ 관련해서 작성했던 블로그 글
https://blog.yoouyeon.dev/github-action-zenhub-code-review

8 / 17

https://blog.yoouyeon.dev/github-action-zenhub-code-review

PROJECT 01 - MODDO YOON JEONGYEON

디자인 시스템의 토큰을 정의하고 타입 안정성을 개선했습니다.

디자인 시스템의 컬러 토큰을 테마 객체로 구조화하고,

이를 기반으로 타입을 생성하는 유틸리티 타입을 정의했습니다.

이를 통해 IDE 자동완성 기능을 통해 사용할 수 있는 토큰을 쉽게

찾을 수 있게 되었고, 컴파일 타임에 잘못 사용된 토큰을 감지할 수

있었습니다.

또한 타입이 테마 객체를 기준으로 자동 생성되도록 구성하여

컬러 토큰이 변경되더라도 타입 정의를 별도로 수정할 필요가 없어

유지보수성이 향상되었습니다.

‣ 관련해서 작성했던 블로그 글
https://blog.yoouyeon.dev/convert-object-keys-to-type

▲ 생성된 컬러 토큰 타입 ▲ 컬러 토큰 생성 유틸리티 타입

9 / 17

https://blog.yoouyeon.dev/convert-object-keys-to-type

깃허브 https://github.com/githru/githru-vscode-ext

개발 기간 2024.07 ~ 2024.11

기술 스택 TypeScript, jest, Git

역할 대규모 git 로그 처리 성능 최적화

테스트 안정성 개선

기여한 PR https://github.com/githru/githru-vscode-ext/
pulls?q=is%3Apr+assignee%3Ayoouyeon+

PROJECT 02 - Githru YOON JEONGYEON

Git의 시각적 분석을 위한

VSCode Extention

Githru (깃쓰루)
Githru는 Git 로그를 시각화하여

개발 히스토리를 더 쉽게 이해할 수 있도록 돕는

오픈소스 VSCode 확장 프로그램입니다.

https://github.com/githru/githru-vscode-ext
https://github.com/githru/githru-vscode-ext/pulls?q=is%3Apr+assignee%3Ayoouyeon+
https://github.com/githru/githru-vscode-ext/pulls?q=is%3Apr+assignee%3Ayoouyeon+

PROJECT 02 - Githru YOON JEONGYEON

Problem

기존 Git 로그 파싱 로직은 fuller 포맷으로 로그를 가져온 뒤,

필요한 필드를 추출하기 위해 총 3번의 순회를 수행했습니다.

이 과정에는 괄호나 공백 제거 같은 불필요한 문자열 처리가 많았고,

데이터를 분리했다가 다시 조합하는 비효율적인 부분도

존재했습니다.

Git 로그의 파싱 로직을 최적화했습니다.

commit fbb514f6136ec4f 491c8469533e5d (HEAD -> main, origin/main, origin/HEAD) 
Author: yoouyeon <jyeon.yoon59@gmail.com> 
AuthorDate: Fri Aug 30 12:58:10 2024 +0900 
Commit: yoouyeon <jyeon.yoon59@gmail.com> 
CommitDate: Fri Aug 30 12:58:10 2024 +0900  

 fix(engine): lint error  

1 1 packages/analysis-engine/src/parser.spec.ts 
1 1 packages/analysis-engine/src/parser.ts

▲ fuller 포맷으로 출력한 Git 로그 예시 ▲ 여러 배열로 관리 후, 다시 합쳐야 하는 복잡한 순회 구조

11 / 17

PROJECT 02 - Githru YOON JEONGYEON

Solution

fuller 포맷 대신 커스텀 포맷을 설계해

필요한 필드를 한 번에 파싱할 수 있도록 개선했습니다.

각 필드를 특정 구분자로 구분하고, String.split() 을 활용해

단 두번의 연산만으로 파싱하도록 변경했습니다.

이를 통해 3회 순회하던 파싱 로직을 단일 작업으로 최적화했고,

1,000개 커밋에서 44.78%, 10,000개 커밋에서 26.44%의

처리 시간을 단축했습니다.

‣ 관련해서 작성했던 블로그 글
https://blog.yoouyeon.dev/ossca-week-7-record

<commit hash>

<parent hashes>

<refs(branches, tags>

<author name>

<author email>

<author date>

<committer name>

<committer email>

<committer date>

<commit message subject>

<commit message body>

<diffstat>

▲ 수정한 Git 로그 포맷 ▲ Git Log 파싱 성능 비교 (As-Is vs To-Be)

▲ split 2회로 파싱 후 바로 JSON 구성

300

250

200

150

100

50

0

Unit: ms

12.84 7.09

240.352

169.442

975 commits 12,308 commits

Before After

12 / 17

https://blog.yoouyeon.dev/ossca-week-7-record

PROJECT 02 - Githru YOON JEONGYEON

Git 로그 파싱 함수의 테스트 커버리지를 향상했습니다.

Git 로그 파싱 로직을 개선하는 과정에서,

기존 테스트가 단순한 사례만 다루고 있다는 한계를 발견했습니다.

이를 보완하기 위해 실제 커밋 로그 데이터를 수집해 분석하고,

git log 매뉴얼을 검토해 아래와 같은 엣지 케이스를 확인했습니다.

첫 번째 커밋: parent 해시가 없음

Merge 커밋: parent 해시가 2개 존재

빈 커밋: 커밋 메시지 body가 없음

이 외에도 실제 사용 맥락을 고려해서

body가 포함된 커밋

여러 커밋이 포함된 로그

에 대한 테스트 시나리오를 추가했습니다.

그 결과 Branch coverage를 76.1% → 80%로 향상시켰으며

핵심 로직의 분기 처리 안정성을 높일 수 있었습니다.

‣ 개발 작업 Pull Request
https://github.com/githru/githru-vscode-ext/pull/735

▲ 테스트 케이스 추가 전. Branch coverage 76.19%

▲ 테스트 케이스 추가 후. Branch coverage 80%

13 / 17

https://github.com/githru/githru-vscode-ext/pull/735

깃허브 https://github.com/yoouyeon/Peer-Frontend

팀 구성 프론트엔드 7명 / 백엔드 6명 / 디자이너 2명

개발 기간 2023.11 ~ 2024.03

기술 스택 TypeScript Next.js, , SWR, MUI

역할 프론트엔드

쪽지 기능과 팀게시판 기능 개발

PROJECT 03 - peer YOON JEONGYEON

42Seoul 학생들을 위한

팀 빌딩 플랫폼

peer (피어)
peer는 42 Seoul 커뮤니티원을 위한

프로젝트/스터디 팀을 찾고, 연결하고, 함께하기까지의 번거로운 과정을

단순하게 이어주는 팀 빌딩 플랫폼입니다.

https://github.com/yoouyeon/Peer-Frontend

PROJECT 03 - peer YOON JEONGYEON

쪽지 목록 화면 쪽지 대화 화면 팀 게시판 화면 팀 게시글 화면

15 / 17

PROJECT 03 - peer YOON JEONGYEON

React-Testing-Library를 활용해 컴포넌트 테스트 환경을 구축했습니다.

‣ 관련해서 작성했던 블로그 글
https://blog.yoouyeon.dev/zustand-store-initial-state-testing

▲ localStorage의 값을 모킹할 수 없었던 기존 코드

▲ 팩토리 함수로 모킹한 의존성을 전달해 store를 생성하는 코드

Background

React-Testing-Library와 MSW를 활용해

백엔드 없이도 프론트엔드 개발과 테스트가 가능한 환경을 구축했습니다.

이 과정 중 zustand store의 초기값을 localStorage 값에 따라

설정하는 기능을 테스트해야 하는 상황이 있었습니다.

Problem

하지만 localStorage 모킹이 테스트에 반영되지 않는 문제가 있었습니다.

이 문제는 create 함수가 모듈 import 시점에 실행되어,

테스트 환경에서 모킹이 적용되기 전에 store가 먼저 생성되는 구조 때문이었습니다.

Solution

팩토리 함수를 구현해서 store 생성 시점을 제어하고, 생성 시점에

의존성 주입이 가능하도록 리팩토링했습니다.

이를 통해서 모듈 import와 mock 적용 시점의 차이를 알게 되었고,

테스트 가능한 구조와 의존성 주입 설계의 중요성을 배울 수 있었습니다.

16 / 17

https://blog.yoouyeon.dev/zustand-store-initial-state-testing

PORTFOLIO YOON JEONGYEON

감사합니다
복잡함을 단순하게 바꾸는 프론트엔드 개발자, 윤정연

yoouyeon.dev@gmail.com

010 - 2290 - 6150

mailto:yoouyeon.dev@gmail.com
tel:010-2290-6150

